

RollNo. _____

--	--	--	--	--	--	--	--	--	--	--	--

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. /B.Tech / B. Arch (Full Time) - END SEMESTER EXAMINATIONS, APR / MAY 2025

BIO- MEDICAL ENGINEERING BRANCH
 (Common to all branches except EEE branch)
 VI Semester

EE – 5692 & Electric Vehicle Technology
 (Regulations 2019)

Time:3hrs

Max.Marks: 100

CO1	Able to understand the principles of conventional and special electrical machines
CO2	Acquired the concepts of power devices and power converters.
CO3	Able to understand the control for DC and AC drive systems
CO4	Learned the electric vehicle architecture and power train components
CO5	Acquired the knowledge of mechanics of electric vehicle and control of electric vehicles

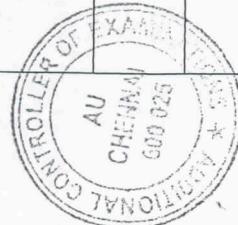
BL – Bloom's Taxonomy Levels

(L1-Remembering, L2-Understanding, L3-Applying, L4-Analysing, L5-Evaluating, L6-Creating)

PART- A(10x2=20Marks)

(Answer all Questions)

Q.No.	Questions	Marks	CO	BL
1	Why magnetic field is stronger than electric field?	2	CO1	L2
2	Write the significance of back EMF in a DC Motor	2	CO1	L2
3	Compare power diodes and signal diodes	2	CO2	L1
4	What is the need for THD?	2	CO2	L1
5	Give example for active load torque and passive load torque.	2	CO3	L1
6	Why V/f is to be maintained as a constant value in an induction motor drive system?	2	CO3	L2
7	Compare IC engine and EVs	2	CO4	L2
8	Draw the structure of series HEV power train	2	CO4	L1
9	What are the forces will be acting on an electric vehicle?	2	CO5	L1
10	How power will be regenerated in an electric vehicle?	2	CO5	L2


PART- B(5x 13=65Marks)
 (Restrict to a maximum of 2 subdivisions)

Q.No.	Questions	Marks	CO	BL
11 (a)	How torque will be developed in a DC motor and derive the torque equation of a DC motor.	13	CO1	L3
OR				
11 (b)	Explain the working principle of BLDC motor with necessary block diagram and circuits.	13	CO1	L3
OR				
12 (a)	How MOSFET will be used for high switching frequency applications? Explain the working of MOSFET.	4+9	CO2	L3
OR				
12 (b)	Construct a multilevel inverter (MLI) with a capacity of generating seven levels in the output voltage. Explain its working modes too	13	CO2	L4

13 (a)	How speed of a DC motor can be controlled using a four quadrant chopper? Explain each quadrant of operation.	13	CO3	L4
OR				
13 (b)	For steady-state balance conditions the total 3-phase real and reactive power may be expressed as $P_e = 3V_s I_s \cos[\Theta_{ev}(0) - \Theta_{ei}(0)]$ $Q_e = 3V_s I_s \sin[\Theta_{ev}(0) - \Theta_{ei}(0)]$ Show that the following expressions are equal to those given above: $P_e = 1.5 (V_{qs} I_{qs} + V_{ds} I_{ds})$ $Q_e = 1.5 (V_{qs} I_{ds} - V_{ds} I_{qs})$	13	CO3	L5
OR				
14 (a)	Explain Series-parallel 2 × 2 vehicle architecture with necessary block diagram.	13	CO4	L3
OR				
14 (b)	Explain the procedure for identifying a motor for EV application and explain the sizing of EV power train.	13	CO4	L3
15 (a)	An EV has the following parameter values: $m = 800 \text{ kg}$, $C = 0.2$, $A = 2.2 \text{ m}^2$, $C_0 = 0.008$, $1 = 1.6 \times 10^{-6} \text{ s}^2/\text{m}^2$ Also, take density of air $\rho = 1.18 \text{ kg/m}^3$, and acceleration due to gravity $g = 9.81 \text{ m/s}^2$. The vehicle is on level road. It accelerates from 0 to 65 mi/h in 10 s such that its velocity profile is given by; $v(t) = 0.29055t^2$ for $0 \leq t \leq 10 \text{ s}$. a. Calculate tractive force, $F_{TR}(t)$ for $0 \leq t \leq 10 \text{ s}$. b. Calculate tractive power, $P_{TR}(t)$ for $0 \leq t \leq 10 \text{ s}$. c. Calculate the energy loss due to non-conservative forces E_{loss} . d. Calculate change in tractive energy, Δe_{TR} .	3+3+3 +4	CO5	L4
OR				
15 (b)	Explain the following (i) Rolling Resistance Force, (ii) Aerodynamic Drag (iii) Hill Climbing Force (iv) Acceleration Force (v) Total Tractive Effort	3+3+2 +2+3	CO5	L3

PART- C(1x 15=15Marks)
 (Q.No.16 is compulsory)

Q.No.	Questions	Marks	CO	BL
16.	The full converter is connected to a 120 V 60 Hz supply. The load current I_a is continuous and its ripple content is negligible. The turns ratio of the transformer is unity. (a) express the input current in a fourier series. Determine the HF of the input current, DF, and input PF. (b) If the delay angle is $\alpha = \pi/4$. Calculate V_{dc} , V_{in} , V_{rms} , HF, DF and P	5+10	CO2	L5

